Separating Geometric Thickness from Book Thickness

نویسنده

  • David Eppstein
چکیده

We show that geometric thickness and book thickness are not asymptotically equivalent: for every t, there exists a graph with geometric thickness two and book thickness ≥ t.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded-Degree Graphs have Arbitrarily Large Geometric Thickness

The geometric thickness of a graph G is the minimum integer k such that there is a straight line drawing of G with its edge set partitioned into k plane subgraphs. Eppstein [Separating thickness from geometric thickness. In Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004] asked whether every graph of bounded maximum degree has bounded geometric thickness. We answer t...

متن کامل

Separating Thickness from Geometric Thickness

We show that graph-theoretic thickness and geometric thickness are not asymptotically equivalent: for every t, there exists a graph with thickness three and geometric thickness ≥ t.

متن کامل

Geometric Thickness of Complete Graphs

We define the geometric thickness of a graph to be the smallest number of layers such that we can draw the graph in the plane with straight-line edges and assign each edge to a layer so that no two edges on the same layer cross. The geometric thickness lies between two previously studied quantities, the (graph-theoretical) thickness and the book thickness. We investigate the geometric thickness...

متن کامل

Journal of Graph Algorithms and Applications

We define the geometric thickness of a graph to be the smallest number of layers such that we can draw the graph in the plane with straightline edges and assign each edge to a layer so that no two edges on the same layer cross. The geometric thickness lies between two previously studied quantities, the (graph-theoretical) thickness and the book thickness. We investigate the geometric thickness ...

متن کامل

S ep 2 00 5 BOUNDED - DEGREE GRAPHS HAVE ARBITRARILY LARGE GEOMETRIC THICKNESS

The geometric thickness of a graph G is the minimum integer k such that there is a straight line drawing of G with its edge set partitioned into k plane subgraphs. Eppstein [Separating thickness from geometric thickness. In Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004] asked whether every graph of bounded maximum degree has bounded geometric thickness. We answer t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره math.CO/0109195  شماره 

صفحات  -

تاریخ انتشار 2001